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Motivation

is_malignant(A) :-

'BIRADS_category'(A,b5), 
'MassPAO'(A,present),     

'MassesDensity'(A,high),  
'HO_BreastCA'(A,hxDCorLC),

in_same_mammogram(A,B),

'Calc_Pleomorphic'(B,notPresent), 

'Calc_Punctate'(B,notPresent).
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Motivation

is_malignant(A) :-

'BIRADS_category'(A,b5), 
'MassPAO'(A,present),     

'MassesDensity'(A,high),  
'HO_BreastCA'(A,hxDCorLC),

in_same_mammogram(A,B),

'Calc_Pleomorphic'(B,notPresent), 

'Calc_Punctate'(B,notPresent).

42 malignant and 11 benign findings
(435 total malignant + 65,000 benign)
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Data (in Health)

• Unstructured x Structured

• Different sources of information

• Data from multiple tables

• Different formats

Data  Information Knowledge UnderstandingWisdom
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Some data science principles

• (Medical) systems are complex

• Data is dirty: deal with it!

• SvOT = LoL!

• Data munging, taming and wrestling > 70% time

• Simplification. Reduction. Distillation.

• Curiosity. Empiricism. Skepticism.

(Somehano, DataScience London)
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Learning from data is tricky
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Statistics Vs. Machine learning

Supervised Vs. Unsupervised

Induction Vs. Deduction

Correlation Vs. Causation

Sampling & Confidence intervals

Probability & Distribution

Deviation & Variance

Causation & Prediction



Case Studies

• Breast Cancer Diagnosis

• Cardiac pathology detection
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Breast Cancer: General Scenario

• USA:
▫ 1 woman dies of breast cancer 

every 13 minutes

▫ In 2013:
 232.340 invasive cancers
 39.620 (≈ 17%) expected to die

Source: U. S. Breast Cancer Statistics –
accessed January 2014

• Portugal:
▫ Per year:

▫ 4500 new cases
▫ 1500 deaths (33%)

Source: Liga Portuguesa Contra o Cancro –
accessed January 2014
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BI-RADS© Lexicon
Descriptors annotated by a specialist in mammography

(X-Ray of the Breast)
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Nodule/Mass:

Solid lesion with more than 
1 cm of width and usually well 
defined. 

Also known as tumour.

• Breast screening

Cheapest screening method
to detect tumours at an
early stage

• Image annotated
according to the BI-RADS 
lexicon



BI-RADS© categories

• Degree of malignancy of a finding:

▫ B1, B2, B3: indicative of a benign finding

▫ B4, B5: indicative of high-risk malignancy

• Medical performance:
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PPV = 0.67 (B5)
PPV = 0.06 (B4)
PPV = 0.09 (B3)

• in G. Kennedy, et al., “Predictive value of BI-RADS classification for breast 

imaging in women under age 50”, in Breast Cancer Res Treat, 2011.



What if something suspicious is 

found?

• Patients need to go through a biopsy

▫ Invasive treatment

• Not all biopsies are conclusive!

• General practice: send every patient to excision
• Less than 15% of patients that go through excision have, in fact, 

a malignant finding


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Goals

• To improve:
▫ classification of malignant and benign tumors

 MammoClass

 ILP Rules

 ExpertBayes

▫ classification of multiple diseases
 Not yet approached

▫ BI-RADS© categorization
 ongoing
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Goals

• To be able to:
▫ deal with multiple tables

▫ correlate multiple exams of the same patient

 T-SPPA 

▫ reduce the number of patients that go to excision when
results of biopsies are inconclusive

▫ extract BI-RADS© features from texts written in 
Portuguese

▫ integrate physician advice to the automatic learning
process

 ExpertBayes
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Other goals

• To study the value of information added by
features obtained using image processing
algorithms

• To produce interactive tools that can be used by
specialists
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Related Projects

• ABLe: Advice-Based Learning applied to Health Care

▫ FCT-funded

• Integrating Machine Learning and Physician Expertise 
for Breast Cancer Diagnosis
▫ NLM-funded (National Library of Medicine)

• QREN (Project 38667) with NLPC
▫ Interactive tool for data analysis and discovery
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Tools

• WEKA (Black-box classifiers)

▫ Propositional classification algorithms

▫ Feature selection

▫ Filtering

• Aleph (White-box classifiers)

▫ Inductive Logic Programming (ILP)

▫ Multi-relational learning

▫ First order-logic

▫ Interpretable results

• YAP Prolog

▫ Efficient implemention of Prolog

▫ Several optimizations to ILP

• ExpertBayes (graphical model)

▫ In-house implementation of Bayes networks refinements
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MammoClass

• Online application freely 
available at:

▫ http://cracs.fc.up.pt/mammoclass/
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http://cracs.fc.up.pt/mammoclass/


First-order rules (ILP)
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ExpertBayes
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Heart Diseases in Children
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• 6 million

▫ children worldwide suffer from 
heart disease 1

• 500
▫ cardiac surgeries in children per year 

in Portugal 2

• 8-10 out of 1000
▫ babies are born with a congenital 

heart disease in Portugal, Brazil
and USA 2,3,4

Sources:

1) European Society of Cardiology – June 2013

2) Apifarma, Portuguese Association of the Pharmaceutical Industry – June 2013

3) Revista Brasileira de Cirurgia Cardiovascular– June 2013

4) Lucile Packard Children’s Hospital at Stanford– June 2013



State of the Art
• [1] D. Aha and D. Kibler, “Instance-based prediction of heart-disease presence with the 

Cleveland database”, tech. rep., University of California, Mar. 1988.

▫ Accuracy: 75.7%

• [2] S. M. Kamruzzaman, A. R. Hasan, A. B. Siddiquee, and M. E. H. Mazumder, “Medical 
diagnosis using neural network”, in 3rd International Conference on Electrical & Computer 
Engineering (ICECE), pp. 28–30, Dec. 2004.

▫ Accuracy: 87.5%

• [3] B. O’Hora, J. Perera, and A. Brabazon, “Designing radial basis function networks for 
classification using differential evolution”, inProc. International Joint Conference on 
Neural Networks (IJCNN), pp. 2932 –2937, 2006.

▫ Accuracy: 84%

• [4] J. Wu, J. Roy, and W. F. Stewart, “Prediction modeling using EHR data: Challenges, 
strategies, and a comparison of machine learning approaches”, Medical Care, vol. 48, 
pp. 106–113, Jun. 2010.

▫ detection of heart failure more than 6 months before the actual date of clinical diagnosis

▫ AUC: 0.77
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Goals

• Study relations between demographic and physiological 
features

• Integrate clinical features with features extracted from the 
heart sounds 

▫ ongoing

• Build classifiers that, in an automatic way, distinguish 
between normal and pathological cases

▫ …to support decision during screening

• Create a database for cardiology
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Collaboration

• Recife, Pernambuco – Brazil

• Collected between October
2003 and September 
2009

• [2-19] year old children

• Average age: 8.6 (year)

Data



17k

7199 instances
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data cleaning

data transformation

data normalization

404 instances removed 
from phase 1 to phase 2

Methodology

Preprocessing 
tasks

7603

1st phase

2nd phase

Dataset

2507 (34.8%)

pathological 
(+)4692 (65.2%) 

normal (-)

Munging, 

Taming, 

Wrestling





7199 instances
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33 attributes 17 attributes 
removal of 
irrelevant 
features*

Methodology

Preprocessing 
tasks

Dataset

* patient ID, name of the physician, health insurance information, etc.
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17 attributes 

Attribute
Height (cm)

Weight (kg)

Sex

Age Range

Body Mass Index Percentile

Systolic Blood Pressure (SBP)

Diastolic Blood Pressure (DBP)

Result-SBP-DBP

Murmur

Second Heart Sound (S2)

Pulses

Heart Rate (bpm)

Current Disease History 1 (CDH 1)

Current Disease History 2 (CDH 2)

Primary Reason

Secondary Reason

Pathology (class)

Note:

Some of the attributes  are annotations 
provided by a cardiologist, not features 
extracted from the sound wave files

Methodology

Dataset



Results: Feature Importance
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All 7199 cases



Classification – Results

Predicting abnormalities
Metrics Nested c.v. internal test

CCI (%) 93.31 93.32

Sensitivity 0.85 0.85 

Specificity 0.98 0.98

AUC 0.93 0.93
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Metrics Nested c.v. internal test

CCI (%) 91.56 90.53

Sensitivity 0.72 0.70 

Specificity 0.98 0.97

AUC 0.85 0.83

7199

169
[5]

• [5] P. Ferreira et al., “Detecting cardiac pathologies from annotated auscultations”, in 

Proc. International Symposium on Computer-Based Medical Systems (CBMS), 2012.

Best algorithm in all 
folds: NaiveBayes



Related project

• DigiScope

• Tools:

▫ WEKA

▫ Aleph

▫ YAP Prolog

▫ R

▫ And yes…Excel!
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Parallelisation

• Map-reduce construct for Prolog

▫ Implemented in YAP Prolog

▫ User level library

▫ Useful to program many applications

▫ Shared memory (thread-based)

▫ Distributed memory (MPI)

▫ Hybrid (ongoing)

▫ Dynamic data scheduler
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Some Results: speedups
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Parallelisation

• Datalog for GPUs

▫ Implemented in CUDA

▫ User level library

▫ Conversion of Prolog terms to intermediate
numeric representation (for GPU efficiency)

▫ Join, select, and other database operations
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Some Results: Execution times
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Parallelization: grid stuff

• Aleph in grids

• Scheduling algorithms and grid portal

• People:

▫ Odair Neves

▫ Edgard Neto

▫ João Rodrigues

▫ Kiran Ali

▫ Rafael Nunes

▫ Hugo Figueiredo
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Wrap Up

• Various machine learning and statistical
methods applied to two medical domains

▫ Focus on first-order models and graphical models

• Making machine learning efficient

▫ Parallelization for multicores and GPUs

We are open to more adventures!

Thank you for your patience!
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