Pythondo

A web system for automatic feedback
of programming assignments

Pedro Vasconcelos

DCC/FCUP & LIACC

May 7, 2014

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 1/31

“Introducéo a Programacgo” (CC101/ECC101)
@ Introductory programming course at FCUP
@ For 1st year students of most majors:

Astronomy

Biology

Physics

Mathematics

Chemistry

Engineering Sciences

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 2/31

Motivation (cont.)

Challenges:
@ 405 students enrolled (in 2013);
@ large disparities in student’s background and motivation;
@ many realize their difficulties only by failing the first exam;
@ low success figures (35% passes in 2012).

Can we help students learn programming in a more effective
way?

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 3/31

Methodology

@ Programming is a primarily a writing skill.
@ Largest dificulty: expressing yourself in an unambiguous
notation.

@ Students should be encouraged to write many short
programs as soon as possible.

@ Aim: quality assurance rather than quality control

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 4/31

Methodology (cont.)

Getting feedback is essential to consolidate learning:
correctness: does my program produce the right answer?
structure & style: is it expressed clearly?

Employ testing to give automatic feedback on correctness.

(Structure and style still requires teacher feedback.)

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 5/31

Alternatives

. What about Mooshak?
@ initially intended for ACM-style programming contests;
@ also often used for teaching at DCC.

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 6/31

Alternatives (cont.)

Positives:
@ tried and tested;
@ language agnostic;
@ good administrative interface.

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 7/31

Alternatives (cont.)

Negatives:
@ submissions must deal with I/O by default;

@ uninformative feedback (but can be overridden with some
effort);

@ some misfit between objectives of contests & training;

@ scalability issues due to a dated implementation (CGl
scripts).

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 8/31

Assessment

@ Some advantages in developing a specialized system for
teaching.

@ An opportunity to try Haskell web programming.

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 9/31

Pythondo

@ A system for evaluating programming assignments
@ Specific for the Python language:

@ no need to deal with 1/O;

e allows testing fragments (functions, methods, classes, etc.);
e test feedback mimics the Python shell;

o failed test cases is always reported.

@ Implemented in Haskell (plus some Python & JS)

Try it now: http://ipminor.dcc.fc.up.pt

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 10/31

http://ipminor.dcc.fc.up.pt

About the name

Python a general-purpose dynamic programming language
by Guido van Rossum.
do (from Japonese):

@ path, road, street;
@ method, way;
Q say.

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 11/31

Why Haskell?

All the usual reasons:

@ High-level development
@ Correctneness

@ Performance

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 12/31

Really. .. why Haskell?

Web servers are kind of functional anyway:
@ wait for a request;
@ process it;
© render a response.

Mostly consists of converting between data formats:
@ HTTP requests
@ HTML/XML documents;
@ JSON documents;
° ...

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 13/31

Really. .. why Haskell? (cont.)

GHC is really good at concurrency.

thread-ring - How nany times slower? {Elapsed secs)

e
= [SE =Y
= [==
= == =1

o
=

(5]
E=

[
=

o

program time + fastest program time

w

zelected thread-ring programs 23 Apr 2014 uAdg

Thread ring benchmark from
http://benchmarksgame.alioth.debian.org

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 14 /31

http://benchmarksgame.alioth.debian.org

Really. .. why Haskell? (cont.)

@ Several frameworks for web programming:

e Happstack
e Yesod
e Snap
e Scotty

@ Different approaches, levels of functionality, documentation,

stability, etc.

Pedro Vasconcelos (DCC/FCUP & LIACC)

Pythondo

May 7, 2014

15/31

The Snap web framework

http://snapframework.com/

@ Just a bunch of Haskell libraries
@ Includes a fast HTTP server library
@ A sensible and clean monad for web programming

@ Many optional snaplets:
e HTML-based templating system for generating pages
e User sessions, authentication
e File uploading
e Database access, ACID state
o ...
@ Some “industrial” users (e.g. Janrain, Soostone Inc)

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 16/31

http://snapframework.com/

Hello, Snap!

main :: IO ()
main = quickHttpServe site
site :: Snap ()
site = route [("hello", writeBS "Hello world!")
, ("hello/:name", helloHandler)]
<|> dir "static" (serveDirectory "files")

helloHandler = method GET $ do
opt <- getParam "name"
writeBS $ case opt of
Nothing —-> "must specify name"
Just name —-> BS.append "Hello, " name

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 17/31

Pythondo architecture

User authentication via department LDAP:
@ avoids the need to create users, set passwords, etc;
@ less hassle for 1st year students;

@ no need to limit users: secure execution must be ensured
anyway.

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 18/31

Pythondo architecture (cont.)

APl is vaguely REST-like:

GET /problems fetch list available problems
GET /problems/:pid fetch a specific problem
GET /submissions/:pid/:sid fetch a submission
GET /submissions/:pid fetch all submissions
POST /submissions/:pid post a new submission

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo

May 7, 2014

19/31

Pythondo architecture (cont.)

Evaluating submissions:
@ executes a separate Python process;
@ under a “safe-exec” environment;
@ doctest script for each problem;

@ typically 50—100 test cases organized from simpler to more
complex;

@ reports sucess or the first failed test case.

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 20/ 31

Pythondo architecture (cont.)

Output HTML generated using the Heist template library:
@ separates the presentation layer from the internal logic;

@ allows changes to styling, language, etc. without modifying
Haskell code;

@ Snap also serves static files (CSS, JavaScript libraries, etc.)

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 21/31

Conclusions

@ Used for mandatory weekly exercises (27 in total)
@ Could be complete in labs or elsewhere

@ Students required to successfully complete half to attend
exam

@ No attempt to avoid plagiarism during classes
@ Also used in exam (in a controlled environment)

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 22/31

The good

@ Types

©Q Libraries

© Refactoring

© Performance and reliability

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 23/31

newtype UID = UID { fromUID :: ByteString }
newtype PID = PID { fromPID :: ByteString }
newtype SID = SID { fromSID :: Int }

@ No way to mix different IDs
@ Parsing and pretty-printing using Show/Read instances

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 24/ 31

Types (cont.)

data Problem t = Problem {

probID :: PID, —-— unique id

probTitle :: Text, -— title

probDescr :: [Node], —— description (HTML)
probSubmit :: Text, —— default submission
probStart :: Maybe t, —-- optional start time
probEnd :: Maybe t, —-- optional end time
probExam :: Bool —-— 1s an exam problem?

}

@ Describe the shape of data precisely
@ Parametric over the type of times (for parsing)
@ Maybe types: no null pointer exceptions!

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 25/31

Some very good general-purpose libraries used:
parsec parsing using combinators;
configurator processing configuration files;
ekg remote monitoring of Haskell processes.

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 26/31

Refactoring

@ Changes to interfaces are much easier with static types.
@ If it still typechecks, then it will almost never fail at runtime!

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 27/31

Performance and reliability

@ Deployed on a virtual machine (1—4 GB, 1—4 cores)

@ Snap process uses about 20MB

@ Splits work on all available cores (lightweight threads)
@ Server ran unattended for weeks (no crashes)

@ Peak stress test: exam (around 90 simultaneous users)

e No change in resident space
e Should be able to handle many more users

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 28/31

The bad

The Cabal build system:
@ packages can depend on other packages;
@ may demand lower and upper version bounds;

@ conflicts when two versions of the same package are
required;
@ sandboxes improves the situation somehow.

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 29/31

The ugly

Many different string-like types:
String lists of Unicode chars (simple but inefficient);
ByteString vectors of bytes (strict and lazy versions);
Text Unicode text (strict and lazy versions)

@ Requires explict conversions (no subtyping);
@ May have performance costs

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 30/ 31

Thank you!

Questions?

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 31/31

	Motivation
	Methodology
	Implementation
	Conclusions
	Reflections on Haskell

