
Pythondo
A web system for automatic feedback

of programming assignments

Pedro Vasconcelos

DCC/FCUP & LIACC

May 7, 2014

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 1 / 31

Motivation

“Introdução à Programação” (CC101/ECC101)
Introductory programming course at FCUP
For 1st year students of most majors:

Astronomy
Biology
Physics
Mathematics
Chemistry
Engineering Sciences

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 2 / 31

Motivation (cont.)

Challenges:
405 students enrolled (in 2013);
large disparities in student’s background and motivation;
many realize their difficulties only by failing the first exam;
low success figures (35% passes in 2012).

Can we help students learn programming in a more effective
way?

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 3 / 31

Methodology

Programming is a primarily a writing skill.
Largest dificulty: expressing yourself in an unambiguous
notation.
Students should be encouraged to write many short
programs as soon as possible.
Aim: quality assurance rather than quality control

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 4 / 31

Methodology (cont.)

Getting feedback is essential to consolidate learning:
correctness: does my program produce the right answer?
structure & style: is it expressed clearly?

Goal
Employ testing to give automatic feedback on correctness.

(Structure and style still requires teacher feedback.)

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 5 / 31

Alternatives

. What about Mooshak?

initially intended for ACM-style programming contests;

also often used for teaching at DCC.

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 6 / 31

Alternatives (cont.)

Positives:

tried and tested;

language agnostic;

good administrative interface.

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 7 / 31

Alternatives (cont.)

Negatives:
submissions must deal with I/O by default;
uninformative feedback (but can be overridden with some
effort);
some misfit between objectives of contests & training;
scalability issues due to a dated implementation (CGI
scripts).

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 8 / 31

Assessment

Some advantages in developing a specialized system for
teaching.
An opportunity to try Haskell web programming.

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 9 / 31

Pythondo

A system for evaluating programming assignments
Specific for the Python language:

no need to deal with I/O;
allows testing fragments (functions, methods, classes, etc.);
test feedback mimics the Python shell;
failed test cases is always reported.

Implemented in Haskell (plus some Python & JS)

Try it now: http://ipminor.dcc.fc.up.pt

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 10 / 31

http://ipminor.dcc.fc.up.pt

About the name

Python a general-purpose dynamic programming language
by Guido van Rossum.

dō (from Japonese):
1 path, road, street;
2 method, way;
3 say.

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 11 / 31

Why Haskell?

All the usual reasons:
1 High-level development
2 Correctneness
3 Performance

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 12 / 31

Really. . . why Haskell?

Web servers are kind of functional anyway:
1 wait for a request;
2 process it;
3 render a response.

Mostly consists of converting between data formats:
HTTP requests
HTML/XML documents;
JSON documents;
. . .

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 13 / 31

Really. . . why Haskell? (cont.)
GHC is really good at concurrency.

Thread ring benchmark from
http://benchmarksgame.alioth.debian.org

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 14 / 31

http://benchmarksgame.alioth.debian.org

Really. . . why Haskell? (cont.)

Several frameworks for web programming:
Happstack
Yesod
Snap
Scotty
. . .

Different approaches, levels of functionality, documentation,
stability, etc.

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 15 / 31

The Snap web framework

http://snapframework.com/

Just a bunch of Haskell libraries
Includes a fast HTTP server library
A sensible and clean monad for web programming
Many optional snaplets:

HTML-based templating system for generating pages
User sessions, authentication
File uploading
Database access, ACID state
. . .

Some “industrial” users (e.g. Janrain, Soostone Inc)

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 16 / 31

http://snapframework.com/

Hello, Snap!

main :: IO ()
main = quickHttpServe site

site :: Snap ()
site = route [("hello", writeBS "Hello world!")

, ("hello/:name", helloHandler)]
<|> dir "static" (serveDirectory "files")

helloHandler = method GET $ do
opt <- getParam "name"
writeBS $ case opt of

Nothing -> "must specify name"
Just name -> BS.append "Hello, " name

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 17 / 31

Pythondo architecture

User authentication via department LDAP:
avoids the need to create users, set passwords, etc;
less hassle for 1st year students;
no need to limit users: secure execution must be ensured
anyway.

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 18 / 31

Pythondo architecture (cont.)

API is vaguely REST-like:
GET /problems fetch list available problems
GET /problems/:pid fetch a specific problem
GET /submissions/:pid/:sid fetch a submission
GET /submissions/:pid fetch all submissions
POST /submissions/:pid post a new submission

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 19 / 31

Pythondo architecture (cont.)

Evaluating submissions:
executes a separate Python process;
under a “safe-exec” environment;
doctest script for each problem;
typically 50–100 test cases organized from simpler to more
complex;
reports sucess or the first failed test case.

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 20 / 31

Pythondo architecture (cont.)

Output HTML generated using the Heist template library:
separates the presentation layer from the internal logic;
allows changes to styling, language, etc. without modifying
Haskell code;
Snap also serves static files (CSS, JavaScript libraries, etc.)

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 21 / 31

Conclusions

Used for mandatory weekly exercises (27 in total)
Could be complete in labs or elsewhere
Students required to successfully complete half to attend
exam
No attempt to avoid plagiarism during classes
Also used in exam (in a controlled environment)

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 22 / 31

The good

1 Types
2 Libraries
3 Refactoring
4 Performance and reliability

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 23 / 31

Types

newtype UID = UID { fromUID :: ByteString }

newtype PID = PID { fromPID :: ByteString }

newtype SID = SID { fromSID :: Int }

No way to mix different IDs
Parsing and pretty-printing using Show/Read instances

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 24 / 31

Types (cont.)

data Problem t = Problem {
probID :: PID, -- unique id
probTitle :: Text, -- title
probDescr :: [Node], -- description (HTML)
probSubmit :: Text, -- default submission
probStart :: Maybe t, -- optional start time
probEnd :: Maybe t, -- optional end time
probExam :: Bool -- is an exam problem?
}

Describe the shape of data precisely
Parametric over the type of times (for parsing)
Maybe types: no null pointer exceptions!

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 25 / 31

Libraries

Some very good general-purpose libraries used:

parsec parsing using combinators;

configurator processing configuration files;

ekg remote monitoring of Haskell processes.

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 26 / 31

Refactoring

Changes to interfaces are much easier with static types.
If it still typechecks, then it will almost never fail at runtime!

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 27 / 31

Performance and reliability

Deployed on a virtual machine (1–4 GB, 1–4 cores)
Snap process uses about 20MB
Splits work on all available cores (lightweight threads)
Server ran unattended for weeks (no crashes)
Peak stress test: exam (around 90 simultaneous users)

No change in resident space
Should be able to handle many more users

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 28 / 31

The bad

The Cabal build system:
packages can depend on other packages;
may demand lower and upper version bounds;
conflicts when two versions of the same package are
required;
sandboxes improves the situation somehow.

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 29 / 31

The ugly

Many different string-like types:
String lists of Unicode chars (simple but inefficient);

ByteString vectors of bytes (strict and lazy versions);
Text Unicode text (strict and lazy versions)

Requires explict conversions (no subtyping);
May have performance costs

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 30 / 31

Thank you!

Questions?

Pedro Vasconcelos (DCC/FCUP & LIACC) Pythondo May 7, 2014 31 / 31

	Motivation
	Methodology
	Implementation
	Conclusions
	Reflections on Haskell

